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a  b  s  t  r  a  c  t

Earlier  introduced  metrics  of  separation  performance  are  described  in  a systematic  way.  After  providing
the definitions  of  the  metrics  suitable  for  a broad  variety  of applications,  the  study  focuses  on static  anal-
yses  (isothermal  GC,  isocratic  LC, etc.) and  their  general  separation  performance.  Statistically  expected
number  of  resolved  (adequately  separated)  single-component  peaks  is  treated  as  the  ultimate  metric  of
general  separation  performance  of  chromatographic  analysis.  That  number  depends  on  the  peak  capacity
of the  analysis  and  the  number  of  components  in  a test  mixture.  The  peak  capacity,  in  turn,  depends  on
the  separation  capacity  of  a  column  and  the  lowest  separation  required  by  the  data-analysis  system  for
resolving  poorly  separated  peaks.  The  separation  capacity  is  a special  case  of a broader  metric  of  the  sep-
eparability
tilization of separability
pecific separation
peed of analysis

aration  measure  which  is a function  of  column  efficiency,  solute  separability,  and  the level  of  the  solute
interaction with  a column  stationary  phase.  The  formulae  for theoretical  prediction  of all  these  metrics
for  arbitrary  pairs  of peaks  in  static analyses  are  derived.  To  provide  a better insight  into  the  basic  metrics
of the  separation  performance,  additional  metrics  such  as the  solute  discrimination  (relative  difference  in
solute  velocities),  utilization  of  separability  (solute  discrimination  per  unit  of  their  separability),  specific

n  per

An outline of this report was  presented in a lecture at the 34th
International Symposium on Capillary Chromatography (Riva del
Garda, Italy, 2010).

Table 1
separation  (the  separatio

. Introduction

Performance metrics are necessary for quantitative evaluation
f the results of chromatographic analyses, and for optimization of
hromatographic analyses and systems.

This report is intended as the first installment in a series on
erformance metrics in chromatography. The report provides an
pdated review of the earlier introduced metrics [1–8] that have
een successfully applied to performance evaluations and opti-
ization of several separation techniques [1–3,8–12].
The goals for this report are to

. outline a system of mutually compatible metrics of separation
performance;

. compile the definitions of the metrics in one place;

. provide interpretations of the metrics, illustrate their mutual
relations and application to evaluation of the separation per-
formance of static [13] analyses (isothermal GC, isocratic LC,
etc.).
Future installments are intended for applications of the metrics
o evaluation of the separation performance of temperature-
rogrammed GC and gradient-elution LC.

E-mail address: leon@fastgc.com

021-9673/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2011.06.017
 unit  of  separability),  and  others  are  defined  and  found  for  static  analyses.
© 2011 Elsevier B.V. All rights reserved.

The subject of the separation performance includes specific sep-
aration performance and general separation performance. The former
is concerned with the separation of particular solutes in particular
analyses. The latter addresses such issues as the number of peaks
that a given analysis or a given separation technique can resolve
(adequately separate), the number of peaks that can be resolved
during a particular time, during a particular event such as a heating
ramp in GC or a gradient time in LC, etc.

The metrics reviewed here are suitable for evaluation of specific
and general separation performance. However, only the application
of the metrics to the general separation performance is discussed
below. Additional constraints to the applications of the metrics are
described below in the bold face type.
Changes in some terms and notations.

Original term (symbol)
[references]

New term (symbol) [references]

Separation power (P) [8,9] Efficiency (E) [10,13]
Intrinsic efficiency (E) [8] Utilization of separability (Ug) [this report]
Interaction level (�) [5,8] Immobility, affinity to stationary phase (ω)

[this report]

dx.doi.org/10.1016/j.chroma.2011.06.017
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:leon@fastgc.com
dx.doi.org/10.1016/j.chroma.2011.06.017
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ig. 1. (a) An asymmetric peak with centroid at tR . (b) The difference, �t  = tB − tA , in
etention times (i.e. in centroids) of two equally wide asymmetric peaks.

During the use of the earlier proposed terminology, it became
lear that several terms originally assigned to the proposed met-
ics were not intuitive. Later, these terms were replaced with more
ntuitive ones. The most sufficient changes are compiled in Table 1.

. Theory

.1. Metrics of separation performance

.1.1. Peak retention time and width
Retention times and widths of chromatographic peaks are the

ost basic building blocks of the metrics of separation perfor-
ance.
Throughout this report, the centroid (the first mathematical

oment) of a peak is treated as the peak’s retention time (tR)
13]. The centroid of a symmetric peak coincides with the time-
oordinate of its apex. However, this might not be the case for
symmetric peaks as shown in Fig. 1(a).

Also throughout this report, the width of a peak is identified with
ts standard deviation (�) (i.e. with the square root of the peak’s
ariance) [13].

.1.2. Separation measure
Separation (�s) of two equally wide peaks A and B can be

escribed as [4]1

s  = �t

�
, �t  = tB − tA (1)

here tA and tB are retention times of the peaks (Fig. 1(b)) and � is
heir width. When the peak width (�) is a function of time then the
eparation can be defined as [4]

s =
∫ tB

tA

ds =
∫ tB

tA

dt

�
(2)

In the case of a fixed peak width, Eq. (2) converges to Eq. (1).
Generally, quantities tA and tB in Eq. (2) do not have to be reten-

ion times of two peaks. They can also be arbitrary time markers on
he time-axis of a chromatogram. In that case, quantity �s  in Eq. (2)
an be viewed as the separation capacity [4] of the time interval (tA,
B). Both concepts defined in Eq. (2) – the separation of two  peaks
aving retention times tA and tB as well as the separation capacity
f the time interval (tA, tB) – can be collectively called as the separa-
ion measure of a time interval (tA, tB) [4].  Speaking of the separation

easure of a time interval, it might be convenient to view it as a
nion of adjacent non-overlapping �-long subintervals or �-slots.
ccording to Eq. (2),
the separation measure of a time interval is the number of adjacent
on-overlapping �-slots in it.

1 Previously [4,9,10], this metric was denoted as S.
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To switch back and forth between the peak separation aspect
of the separation measure and its peak capacity aspect, the
peak retention times (tR) and the arbitrary time variable (t) of a
chromatographic analysis are treated below as interchangeable
quantities.

A natural extension of a concept of the separation capacity of an
arbitrary time interval is the running separation capacity

s = s(t) =
∫ t

tM

dt

�
(3)

of an analysis (or of a chromatogram). This is the separation capacity
of the analysis from its hold-up time (tM) – the retention time of the
earliest possible peak – up to an arbitrary time t. The separation
capacity (sc) of the entire analysis (entire chromatogram) up to the
retention time (tR,last) of the last peak can be found as

sc = s(tR,last) =
∫ tR,last

tM

dt

�
(4)

Eq. (3) can be viewed as a transformation of the separation
space of a chromatographic analysis (or of a chromatogram) from
t-domain into s-domain. In s-domain, the widths of all peaks are
equal to 1, the definitions of a column separation performance are
generally simpler than they are in t-domain. Thus, the definition
(Eq. (2))  of the separation capacity (�s) of an arbitrary time interval
can be replaced with the equivalent definition,

�s = sB − sA (5)

of the separation capacity (�s) of an arbitrary interval (sA, sB) in the
s-axis of s-domain.

A plot mode allowing to display a chromatogram in s-domain,
Fig. 2, was implemented in several earlier commercial integrators
(HP 3393A, HP 3396A, Hewlett-Packard Co., Palo Alto, CA) and was
utilized in several research projects [14,15].

2.1.3. Peak capacity
A column separation capacity (sc) describes a column separation

performance in terms of a number of �-slots in a chromatogram.
However, the separation capacity does not describe the number
of peaks that a chromatographic analysis can resolve,  i.e. identify
and quantify. That number does depends on the column separa-
tion capacity, but it also depends on the ability of the data-analysis
system to resolve poorly separated peaks. This property can be
quantified by the lowest separation (�smin) required by a given
data-analysis system for resolving two  peaks. It is typically assumed
that 6� separation (�smin = 6) is necessary for resolving two  peaks
by a simple data-analysis system. For more powerful data-analysis
based on peak deconvolution, �smin = 1 or even smaller �smin
might be sufficient for resolving two peaks [17–19].

Peak capacity (�n) of an arbitrary time interval (tA, tB) is the
number of adjacent �smin-long intervals in its separation measure
(�s), i.e. [4]

�n  = �s

�smin
= 1

�smin

∫ tB

tA

dt

�
= nB − nA (6)

where

n = n(t) = s

�smin
= 1

�smin

∫ t

tM

dt

�
(7)

is the running peak capacity. The peak capacity (nc) of the entire
analysis is
nc = n(tR,last) = sc

�smin
(8)

The peak capacity (nc) defined in Eq. (8) is conceptually iden-
tical (although differently worded) to the peak capacity employed
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Fig. 2. (reconstructed from Ref. [16]) A chromatogram of the same static GC analysis presented in (a) t-domain and in (b) s-domain. The plot mode (known as a unigram
plot)  leading to (b) was available in several earlier commercial integrators from Hewlett–Packard Co., Palo Alto, CA. In the unigram plot mode, the speed of a plot paper
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single component peaks in a segment of a chromatogram with statisti-
cally uniform peak distribution is equal to about 18.4% of the segment
peak capacity (�n). This result takes place when the number (�mopt)
of components represented in the segment is half of �n.

0.01

0.1

1

Δpsing  /Δm

Δpsing  /Δn
dvancement was  inversely proportional to expected peak width (�) while the pen
y).  All non-overloaded peaks in (b) appear with the same widths. The height of eac
re  distributed in (a). It is also evident from (b) that, for example, the area of the l
rom  (a).

y Davis and Giddings in their studies of overlap statistics in chro-
atography [1–3]. Eq. (8) shows that

two factors affect the peak capacity (nc) of a chromatographic anal-
sis:
ne of them is the peak capacity (sc) of the analysis, i.e. the total num-
er of adjacent �-slots in its chromatogram.
qually important is the lowest separation (�smin) required by the
ata-analysis system for resolving two peaks.

Similar observations are valid for the peak capacity (�n) of an
rbitrary time interval. A (smin�)-long segment in t-domain and
smin-long segment in s-domain can be called as the resolution slot

n a respective domain.

.1.4. Number of resolved single-component peaks
The number of peaks that can be resolved in an arbitrary seg-

ent of a chromatogram can be equal to its peak capacity (�n), but
nly under the following unrealistic conditions:

. there are exactly �n  peaks in the segment;

. the distance between any two neighboring peaks is exactly one
resolution slot.

Realistically, however, the number of the single-component
eaks that can be resolved in a segment is much smaller than �n.
evertheless, metric �n  is an important benchmark that allows
ne to estimate a realistic number of resolved peaks.

Davis and Giddings have shown that, if the peak distribution
n a chromatogram is statistically uniform (the probability of a
eak within an arbitrary segment of a chromatogram does not
epend on the location of the segment in a separation space of

 chromatogram) then the statistically expected number (�psing)
f resolved single-component peaks in an arbitrary segment of the

hromatogram can be found as [1,2]

psin g = �me−2˛ = �n˛e−2˛,  ̨ = �m

�n
(9)
tion across the paper was proportional to the product �y of � and detector output
k is proportional to its area. The peaks in (b) are more evenly distributed than they
ak is approximately equal to the area of the peak at 5.571 min. This is not evident

where �m is the number of solutes represented in the segment
and  ̨ is the saturation of the segment. In the case of statistically
non-uniform peak distribution,  ̨ could be a function of a running
peak capacity (n). Summation of quantities �psing over the net peak
capacity (nc) of a chromatogram yields the net number (psing,c) of
single-component peaks in a chromatogram with statistically non-
uniform peak distribution [3].

The expected number (�psing) of the single-component peaks
that can be resolved in a given segment of a chromatogram depends
on its saturation (˛). Quantity �psing has a maximum (Fig. 3)

�psing,max = �n

2e
≈ 0.184�n (10)

at  ̨ = ˛opt and, therefore, at �m = �mopt where

˛opt = 0.5, �mopt = 0.5�n (11)

This suggests that

The largest statistically expected number (�psing,max) of resolved
0.03 0. 1 0. 3 1 3
saturation,  α

Fig. 3. Expected number (�psing) of resolved single-component peaks vs. saturation
(˛), Eq. (9).



5 togr. A

o
t
d

2

i
C
g
(
t

2

t

�

w

E

w

d
a
t
c
f
o

t
a
g
“
l
(
m
p
o
m
c
b
E
t
o
p

c
t
t
s
a
m

2

t
s

378 L.M. Blumberg / J. Chroma

Schure has demonstrated that under more favorable statistics
f random peak distribution, �psing,max can be significantly larger
han 18% of �n  [12]. However, only statistically uniform peak
istribution is assumed below.

.2. Factors affecting the separation in static analysis

Static analysis (like isothermal isobaric GC, isocratic isothermal
sobaric LC, etc.) is a one whose conditions do not change with time.
onversely, dynamic analysis (like temperature-programmed GC,
radient-elution LC, etc.) is a one whose conditions change in time
typically according to a pre-determined time-program) [13]. Only
he static analyses are considered below.

.2.1. Column efficiency
In static analyses, the width (�) of a peak relates to its retention

ime (tR) as [13]

 = tR

E
(12)

here E is a column efficiency defined as [10]2

 =
√

N (13)

here N is the column plate number.
Quantity N and, therefore, E significantly depend on a column

imensions and on the mobile phase flow rate. These quantities can
lso be different for different solutes eluting with different reten-
ion times. As a result, E can be a function of time. However, the
hange in E with time is typically minor [13]. It is assumed in all
orthcoming discussions that, for a given column, E is independent
f time.

Sometimes (and this is true for my  own earlier publications),
he plate number (N) is treated as a parameter directly related to

 concept of column separation efficiency [20,21]. This might sug-
est that a column efficiency (E) can be interpreted as the column
separation efficiency”. However, this interpretation can be mis-
eading. Indeed, the concepts of the plate height, the plate number
N) and, therefore, the column efficiency (E) defined in Eq. (13) are

eaningful even in the case of an inert tube having no stationary
hase and incapable of separation. Furthermore, the largest value
f E is higher for an inert tube than it is for a capillary column
ade from the same tube [13,22]. Because the tube’s higher effi-

iency (E) comes together with its inability to separate, it seems to
e misleading to call parameter E as the “separation efficiency”. If

 is the efficiency of a particular aspect of a column performance
hen it is the efficiency of the delivery of the solutes to the column
utlet as the sharp peaks. Thus, the larger is E, the sharper are the
eaks eluting at a given time.

Metrics of separation performance (separation capacity, peak
apacity, number of resolved peaks, etc.) are proportional to E, i.e.
o

√
N. A conventional approach of dealing with metric N rather

han with E gives an exaggerated impression of the spread of the
eparation performances available from the realistic columns. It
lso gives an exaggerated impression of the effects of column and
ethod parameters on the column separation performance.

.2.2. Solute-column interactions

Different solutes might be differently distributed between sta-

ionary an mobile phases of a column. This is the root cause of
eparation in chromatography. The distribution of each particu-

2 Earlier [8,9], this metric was called as the separation power (P).
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lar solute in a given column is governed by the solute distribution
constant [2]

Kc = Cstat

Cmob
(14)

where Cmob and Cstat are the concentrations of the solute in mobile
and stationary phases, respectively. The thermodynamics of the
distribution can be described as [2]

Kc = eg, g = G

RT
(15)

where R = 8.31447 J/(K mol) is the molar gas constant, G is Gibbs
free energy of a solute transport from the stationary to the mobile
phase, and T is the temperature. Quantity g can be viewed as dimen-
sionless Gibbs free energy [8].

Distribution of a solute material between the mobile and the
stationary phases in a particular column can be expressed in one of
the following ways [5,13]:

k  = astat

amob
, � = amob

a
, ω = astat

a
(16)

where a = amob + astat, amob and astat are, respectively, the total
amount of a solute and its amounts in mobile and stationary phases.

Metric � was introduced in 1944 [23]. Since then, it was denoted
by several symbols and was known under several terms [5,13].
Some of them, like the retardation factor [24,25] and the retention
ratio [2,26,27], are counterintuitive. They assign the largest values
of the retardation factor and the retention ratio to the fastest mov-
ing (least retarded, least retained) solutes. Conversely, they assign
the lowest values of the retardation factor and the retention ratio to
the slowest moving (most retarded, most retained) solutes. More
recently proposed term solute mobility (mobility factor) [5,13] is jus-
tified by the fact that the net velocity, v, of a solute migration along
a column is proportional to �, i.e.

v = �u (17)

where u is the mobile phase velocity.
It follows directly from their definitions in Eq. (16) that quanti-

ties k, � and ω relate to each other as

� = 1 − ω = 1
1 + k

, ω = 1 − � = k

1 + k
, k = 1 − �

�
= ω

1 − ω
(18)

and are bound by the conditions

0 ≤ � ≤ 1, 0 ≤ ω ≤ 1, 0 ≤ k ≤ ∞ (19)

The formulae describing relations between � and ω show that
these quantities are complimentary to each other. Thus, if � = 0 then
ω = 1. Conversely, if � = 1 then ω = 0. This justifies the interpretation
of quantity ω as a solute immobility – a normalized measure of its
interaction with the stationary phase (its affinity to the stationary
phase).

Due to the one-to-one relations (Eq. (18)) between metrics k, �
and ω, any one of them is sufficient for all evaluations. However, a
need for the simplicity of theoretical results and their interpreta-
tions dictates preferential choice of one of these metrics over the
others depending on the type of the evaluations. Thus, due to Eq.
(17), metric � offers the simplest relation of a solute velocity (v)
to the mobile phase velocity (u). Metric ω most directly affects the
solute separation (see below).

Retention factor (k) most directly relates to a solute distribution
constant (Kc). It follows from Eqs. (14)–(16) that, in the case of a
liquid stationary phase – the most frequently used one and the

only one considered in forthcoming illustrations,

k = Kc

ˇ
= eg

ˇ
(20)
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here

 = mobile phase volume
stationary phase volume

(21)

s the phase ratio. For capillary columns,  ̌ = 1/(4ϕ) where

 = df

dc
(22)

s dimensionless film thickness [13] in a column with internal diam-
ter dc and stationary phase film thickness df.

Due to Eq. (17), a peak retention time (tR) in a L-long column can
e found as

R = L

v̄
= L

�ū
= tM

�
(23)

here v̄ = L/tR and ū = L/tM are the time-averaged (briefly, aver-
ge) velocities of the solute and the carrier gas [13]. Eqs. (23) and
16) yield:

 = tM

tR
, k = tR

tM
− 1, ω = 1 − tM

tR
(24)

.2.3. Separability of two solutes
As mentioned earlier, different distribution of solutes between

he stationary and the mobile phase in a column is the root cause
f the solute separation. According to Eq. (15), a solute distribution
onstant (Kc) can be expressed via one parameter – the dimension-
ess Gibbs free energy (g) of the transport of a solute from stationary
o mobile phase. An additive metric (�g) defined as the difference,

g = gB − gA = ln
Kc,B

Kc,A
(25)

n dimensionless Gibbs free energies (gA and gB) of solutes A and B
n the same column under the same conditions can be called as the
eparability of the solutes A and B [8].3

Due to Eqs. (20) and (24), the definition in Eq. (25) can be
xpressed via observable parameter of corresponding peaks as
Fig. 4):

g  = ln
kB

kA
(26)

g = ln
tR,B − tM

tR,A − tM
= ln

�R,B − 1
�R,A − 1

(27)

here

 = t

tM
(28)

s dimensionless time [13,29] – the time expressed in units of hold-
p time.

The metric of separability (�g) of two solutes is an alternative
o the metric

k = kB

kA
(29)

f the solute selectivity.  For the reasons discussed in Appendix A and
lsewhere [8],  metric ˛k is not included in the system of metrics
roposed in this report.

.2.4. Discrimination of two solutes
Because two solutes are differently distributed between the sta-
ionary and the mobile phases, they migrate through the column
ith different mobilities (�) and, as follows from Eq. (17), with
ifferent velocities (v). The difference (�v) in the solute velocities

3 In his 1958 review of GC terms and definitions [28], Golay used this metric
parameter ε in Eq. (6)) without giving it a specific name.
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causes the difference (�tR) in their retention times. These obser-
vations suggest that, while the separability (�g) of two  solutes is
the underlying cause of their separation, more immediate cause of
the separation is the difference (��) in their mobilities. Due to Eq.
(17), �tR for solutes A and B can be expressed as

�tR =
(

tR,B

tR,A
− 1

)
tR,A =

( vA

vB
− 1

)
tR,A = �A − �B

�B
tR,A (30)

An interesting case is the one where the value of the relative
difference in mobilities of two  closely spaced solutes is small, i.e.
|(�A − �B)/�B| � 1. In this case, �B ≈ �A, tR,B ≈ tR,A and Eq. (30) can
be expressed as

�tR = ��

�
tR = �ıtR, �� = �A − �B (31)

where the relative difference,

�ı = ��

�
(32)

in mobilities of two  solutes can be viewed as the solute discrimi-
nation in the column [30]. As stated earlier, the separability (�g)
of two solutes is the root cause of their retention time difference
while the solute discrimination (�ı) is the immediate cause of that
difference. The dependence of �ı  on �g  can be expressed via the
derivative,

Ug = dı

dg
= lim

�g→0

�ı

�g
(33)

which can be interpreted as the utilization of separability. Due to
Eqs. (26), (32) and (18), Ug can be found as

Ug = lim
�k→0

(
��

�

1
ln(kB/kA)

)
= �k

1 + k

k

�k
= k

1 + k
= ω (34)

In other words,

The utilization of separability (Ug) of two closely spaced solutes is
equal to their immobility (ω)

The immobility (ω) of a solute is its fraction in the stationary
phase. When that fraction is mall (say, much smaller than 50%)
for each solute (as a result, for example, of too thin stationary
phase film) then the utilization of their separability is small. As
a result, even relatively large solute separability can cause only a
relatively small difference in their velocities, and eventually, a rel-
atively small difference in the solute retention times. Conversely,
when the stationary phase fraction of each solute is large (say,
close to 100%) then nearly 100% of their separability is utilized.
As a result, the discrimination of two closely spaced solutes (the
relative difference in their velocities) is nearly equal to the solute
separability.

2.3. General separation performance of static analysis

Earlier defined separation performance metrics are suitable for
evaluation of specific and general separation performance in many
separation techniques. Following is an illustration of the use of the
metrics for evaluation of general separation performance of static
analysis.

Substitution of Eq. (12) in Eq. (3) and accounting for Eq. (28)
yields:∫ t

E dt t

s =

tM
t

= E ln
tM

= E ln � (35)

Let’s call a range (x, ex)  of some variable x as an exponential
one. Such are the intervals (1, e), (e, e2), etc. in the �-axis of Fig. 5.
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02510150  τ =  t /tM

510150  k =  τ – 1
e e2 e31

Δg = 1 Δg = 1Δg = 1

Fig. 4. Dimensionless time (�, Eq. (28)), retention factor (k) and separability (�g, Eqs. (25) and (27)) in static analysis.
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Fig. 5. Separation performance metrics in a chromatogram of static analysis. According to Eq. (35), separation capacity (�s) of each exponential intervals (�, e�) is equal to
column efficiency (E). Peak capacity (�n, Eq. (7)) and the largest statistically expected number (�psing,max, Eq. (10)) of resolved single-component peaks are also the same in
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ach  exponential interval.

ccording to the definition of dimensionless time (�) in Eq. (28),
n exponential interval in � axis corresponds to the exponential
nterval in t-axis. It follows from Eq. (35) that (Fig. 5)

the separation capacity (�s) of an exponential interval in time-axis
f a static analysis is equal to column efficiency (E)

This observation can be used as an alternative (to Eq. (13)) def-
nition of a column efficiency:

Column efficiency (E) is the separation capacity (�s) of an expo-
ential interval in the separation space of a static analysis. In other
ords, column efficiency (E) is the number of �-slots in an exponential

nterval of the separation space of a static analysis

It is interesting to compare Figs. 4 and 5. In the former, all
xponential intervals in k-axis have the same separability (�g = 1)
hile in the latter, all exponential intervals in �-axis have the same
eparation capacity (�s = E), and other important separation per-
ormance metrics.

As mentioned earlier, Eq. (3) can be viewed as transformation of
-domain into s-domain. Eq. (35) describes that transformation in
static analysis in more specific terms. The inverse transformation
of s-domain into t-domain of static analysis is

t = t(s) = tMes/E

To find the separation (�s), of two  arbitrary peaks, let’s assume
that t0 is the retention time of a reference peak and t is the retention
time of the other peak (quantities t0 and t can also be, respectively,
a reference and an arbitrary markers in the time-axis). Solving
together Eqs. (5),  (35), (18) and (26), one can express �s as a func-
tion [8],

�s  = s − s0 = E ln(1 + (e�g − 1)ω0) (36)

of the separability (�g) of two  peaks, the immobility (ω0) of the
reference peak, and the column efficiency (E).

To get additional insight into Eq. (36), consider the derivative
S =
dg

= lim
�g→0 �g

(37)

which describes the separation (�s) per unit of separability (�g),
and can be called as the specific separation measure (specific sep-
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he reference immobility ω0 = ω(g0) and arbitrary immobility ω(g0 + �g) in a static
nalysis. If the separability span (�g) is relatively small (say, |�g| < 0.3) then ω̄g ≈
0. When �g  increases, ω̄g eventually approaches unity, i.e. ω̄g → 1.

ration, specific separation capacity) [8].4 It follows from Eq. (36)
hat

 = Eω (38)

uggesting that the separation (�s) of two low-separability solutes
the ones with |�g| � 1) can be expressed as the product [8,28]

s  = S�g  = Eω
g, (when |�g � 1|) (39)

here ω is the solute immobility which is nearly the same for both
ow-separability solutes.

Following a guidance of Eq. (39), one can come up with a struc-
urally similar expression

s = E ω̄g�g  (40)

or an arbitrary pair of peaks where

¯ g = 1
�g

∫ g0+�g

g0

ω dg (41)

s the separability-averaged immobility which, due to Eqs. (18) and
15) can be expressed as (Fig. 6):

¯ g = 1
�g

∫ g0+�g

g0

eg dg

1 + eg
= ln(1 + (e�g − 1)ω0)

�g
(42)

hus confirming identity of Eqs. (36) and (40) for arbitrary �g.

In static analysis, the separation of two solutes is equal to the prod-
ct of their separability (�g), separability-averaged immobility ( ω̄g),
nd column efficiency (E).

It is not necessary, but convenient to assume that the refer-
nce eluite is the earliest one. In that case, �g  and �s  are positive
uantities, and if ω0 is close to unity then Eqs. (42) and (40) yield:

¯ g = 1, �s  = E�g, (when ω0 ≈ 1) (43)

To view Eqs. (36) and (40) as well as their special cases from a
ingle cause-and-effect perspective, one can notice that, as follows
rom Eq. (34), the immobility (ω) in Eq. (39) represents the uti-
ization of separability of the closely space solutes. Extending the
oncept of utilization of separability to arbitrary solutes, one can
xpress Eqs. (36) and (40) as
s  = EUg�g  (44)

4 Previously denoted as �s  [8].
Fig. 7. Block-diagram of a top-down view of a system of metrics of separation
performance in chromatography.

where

Ug = ω̄g =
{

�g−1 ln(1 + (e�g − 1)ω0), all cases
ω, |�g| � 1
1, ω0 → 1

(45)

Eq. (44) shows that

The separation of two solutes is proportional to three factors:
separability (�g) of the solutes, utilization (Ug) of the separability,
and column efficiency (E).

3. Discussion

3.1. Overview of the system of metrics

Relationships between the earlier defined metrics is illustrated
in the block-diagram of Fig. 7. Its components represent the fol-
lowing groups of metrics and parameters. Metrics of separation
performance: �psing, �n  and �s.  Sample/solute parameters: �m,
�g and Ug. Column parameters: E, �g  and Ug (parameters Ug and
�g depend on the solutes and on the column). Parameter of data-
analysis system: �smin. Metric �psing (the expected number of
resolved peaks within a given interval of the separation space) can
be viewed as the ultimate metric of the separation performance. On
the bottom of the diagram are those parameters (operational met-
rics) of the sample and the system that affect �psing. In the middle
of the diagram are the metrics of the separation performance (�s
and �n) that affect the metric �psing and can be viewed as being
subordinate to �psing. Similar relationships exist between metric
psing,c (the expected number of resolved peaks in the entire chro-
matogram), its subordinate metrics nc and sc, as well as the system
and sample parameters, E, �smin, m, �g  and Ug.

3.2. Practical measurement of the separation

While providing a conceptually simple definition of the separa-
tion measure (�s), Eq. (2) is inconvenient for practical applications.

Practical measurement of quantity �s  for two peaks having sub-
stantially different widths is described elsewhere [4] where it is
also shown that, if the difference between the widths (�A and �B)
of peaks A and B in static analysis is smaller than a factor of two
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hen, with the better than 5% accuracy, �s  can be approximated as
4]

s  ≈ �t

�̄
, �̄ = �A + �B

2

(
if

1
2

≤ �B

�A
≤ 2

)
(46)

Recall that the resolutions (Rs) of Gaussian peaks can be
escribed as [2,26,27,29–32]

s = �t

4 �̄
,  �̄ = �A + �B

2
(Gaussian peaks) (47)

Comparison of Eqs. (46) and (47) suggests that

s  ≈ 4Rs

(
Gaussian peaks,

1
2

≤ �B

�A
≤ 2

)
(48)

For the reasons discussed in Appendix A and elsewhere [4],  the
esolution (Rs) is not included in the system of metrics summa-
ized in Fig. 7. On the other hand, the resolution is widely used for
he measurement of the degree of the peak separation in practi-
al applications. Eq. (48) suggests that, for Gaussian peaks having
qual or moderately different widths, the difference between the
eparation measure (�s) and the resolution (Rs) is primarily only
n the scale. This suggest that, in practical applications, there is a
mooth transition from conventionally used resolution to theoreti-
ally self-consistent and meaningful separation measure. It should
e recognized, however, that
Eq. (46) is not the definition of �s,  but only an approximation suit-
able for the peaks having equal or moderately different widths.
Eq. (47), on the other hand, is the definition of Rs (and the source
of the shortcomings of Rs described in Appendix A).

0150

ee 21
Δs = 350

Δpsing,max = 11

Δn = 60

Δpsing,max = 11

Δs = 350

Δn = 60

ig. 9. Numerical values of several separation performance metrics of static analysis with
ain  text.
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• Eq. (46) (as is the basic definition in Eq. (2))  is suitable for the
peaks of any shape.

• On the other hand, Eq. (47) and approximation in Eq. (48) are valid
for Gaussian peaks. For non-Gaussian peaks, the very definition
of the resolution is unclear.

It should be also emphasized that Eqs. (36) and (40) are suit-
able for theoretical prediction of the separation measure of the
peaks having arbitrary separability. In that regard, the scope of Eqs.
(36) and (40) is much broader than the scope of Appendix A’s Eqs.
(56) and (58) describing only the resolution of the low-separability
peaks [31].

3.3. Separation rates

Running separation capacity (s) of a static analysis is a logarith-
mic  function (Eq. (35), Fig. 8) of the analysis time. Addition of each
exponential time interval to the analysis time increments s by the
value of a column efficiency (E) (Fig. 5). The temporal rate,

Qt = ds

dt
(49)

of increase of the number of �-slots during analysis can be used as a
metric of the speed of analysis. Due to Eqs. (35) and (28), the speed
of a static analysis can be found as (Fig. 8)

Qt = E

t
= 1

�m�
,  �m = tM

E
(50)

where �m is the unretained peak width. The speed of analysis (Qt) –
the number of �-slots generated per unit of time (t) – declines with
time. This is not surprising because the peak width – the duration
of one �-slot – is proportional to t.

The speed of analysis (Qt) defined in Eq. (49) is the instant speed
at time t. One can also speak of the average speed of analysis,

Q̄t = s

t
(51)

Substitution of Eqs. (35) and (28) in this formula yields (Fig. 8):

Q̄t = E

t
ln

t

tM
= ln �

�m�
(52)

The speed of analysis is the rate of generating the �-slots per
unit of time. One can consider another rate. A chromatographic
analysis can be viewed as a process of transforming the separabil-

ity of the solutes into the separation of the corresponding peaks.
From that perspective, the larger is the separation per a given sep-
arability the better is the separation performance of the analysis.
This aspect of the separation performance can be expressed via the

0251

e3
Δs = 350

Δpsing,max = 11

 t  (min)

Δn = 60

 conventional column. Operational parameters of the analysis are described in the
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pecific separation (S, Eq. (37)) describing the separation per unit
f separability.

Substitution of Eqs. (18) and (24) in Eq. (38) yields:

 = E
(

1 − tM

tR

)
= E

� − 1
�

(53)

ndicating that the slightly retained peaks appearing at or shortly
fter the hold up time (tM) have nearly zero specific separation
Fig. 8). As a result, relatively high separability (�g) is required for
he separation of these peak. This phenomenon has a simple expla-
ation. The peaks are slightly retained because the fractions (ω) of
heir material residing in the stationary phase are small. Accord-
ng to Eq. (34), this results in inefficient transformation (Ug, Eq.
33)) of the separability of these solutes into their discrimination
the relative difference, �ı,  Eq. (32), in their mobilities) and, as fol-
ows from Eq. (38), in low separation per unit of separability. The
olutes eluting later in the analysis do so because larger fractions
ω) of their material reside in the stationary phase. As a result, rel-
tively smaller separability of the solutes is required for obtaining
heir sufficient discrimination and separation. Eventually, some-
here after 7tM or so, ω reaches its nearly 100% plateau causing
early 100% utilization (Ug) of separability and elevating S to near

ts plateau level of E (Fig. 8).

.4. Numerical example

Consider a static GC–MS analysis with conventional column
aving L = 30 m and dc = 0.25 mm and operating under the follow-

ng conditions. Carrier gas: helium at speed-optimized flow rate of
 mL/min [13,33] and vacuum at the column outlet. Let’s assume
hat at least 6�-separation (�smin = 6) is required for resolving two
eaks.

At optimal flow rate, the column efficiency can be estimated as
 ≈

√
L/dc ≈ 350. The hold-up time (tM) in this analysis is close to

 min  (the exact value depends on the column temperature). Let
ssume that tM = 1 min. For these parameters, the numerical values
or the metrics in Fig. 5 are shown in Fig. 9.

Suppose that the analysis lasts for 20 min. According to Fig. 9, the
eparation performance metrics of the entire analysis are: sc = 1050
there are 1050 �-slots in the entire chromatogram), nc = 180 (peak
apacity of the entire chromatogram is 180), psing,c,max = 33 (the
nalysis is expected to resolve about 33 peaks, but only in a test-
ixture consisting of about 525 component).
In order to increase these metrics by 1/3 (sc = 1400, nc = 240,

sing,c,max = 44), the analysis should be about 2.72 times longer, i.e.
bout 55 min. Replacing helium as a carrier gas with hydrogen
educes the analysis time by about 35% (from 55 min  to 36 min)
ithout affecting the separation performance.

The separation performance of the analysis can be substan-
ially improved by using more powerful data analysis based
n the peak deconvolution techniques [17–19].  Suppose that
his reduces the lowest required separation from �smin = 6 to

smin = 1. At �smin = 1, the peak capacity is equal to the separa-
ion capacity. Therefore, the peak capacity (�n) of each exponential
ime-interval becomes 350, and the net peak capacity (nc) of
he four-exponential-interval analysis becomes 1400. Quantities

psing,max and psing,c,max become 64 and 258, respectively. This sig-
ificant improvement highlights two important factors:

. The ability of a data-analysis system to resolve poorly separated
solutes significantly affects the peak capacity of the analysis and

the number of the peaks that the analysis can resolve.

. Speaking of peak capacity of an analysis, it is important to specify
the lowest required peak separation (�smin) on which the value
of the peak capacity is based. Comparison of the peak capacities
 1218 (2011) 5375– 5385 5383

of two  analyses utilizing different data-analyses systems with
unspecified �smin can be misleading.

4. Conclusion

Metrics of separation performance like the separation of two
peaks and the peak capacity of a time-interval in a chromatogram
(collectively called as the separation measure), the peak capacity,
and the statistically expected number of resolved peaks are defined.
Also defined are the accompanying metrics like the peak sepa-
rability and discrimination, a column efficiency, the utilization of
separability, the specific separation and others. The metrics com-
prise a system of mutually compatible metrics. The values of all
metrics for arbitrarily distant peaks and arbitrary time-intervals in
static analyses (isothermal GC, isocratic LC, etc.) are found. Mutual
relations of several metrics to one another and to other historically
known metrics are discussed.

Such well-known metrics as the peak resolution, the selectivity,
and the effective plane number are not included in the proposed
system of metrics. The reasons for that are addressed in Appendix
A.

Conventions and Nomenclature

Subscripts
c parameter describes the complete (entire) analysis
R parameter is measured at a peak retention time (a solute

elution time)

Symbols
dc internal diameter of column tubing
df stationary phase film thickness
E column efficiency, Eq. (13)
G Gibbs free energy of solute transport from stationary

phase, Eq. (15)
g dimensionless Gibbs free energy, Eq. (15)
�g separability of two solutes, Eq. (25)
k retention factor, Eq. (16)
Kc distribution constant, Eq. (15)
L column length
�m number of solutes eluting within a time-interval
N plate number
n running peak capacity, Eq. (7)
nc peak capacity of entire analysis, Eq. (8)
�n peak capacity of a time-interval, Eq. (6)
�psing statistically expected number of resolved single-

component peaks within a time-interval
Qt speed of analysis, Eq. (49)
Q̄t average speed of analysis, Eq. (51)
R molar gas constant, R = 8.31447 J/(K mol)
S specific separation measure, Eq. (37)
s running separation capacity, Eq. (3)
sc separation capacity of the entire analysis, Eq. (4)
�s separation measure (separation of two peaks, separation

capacity of time-interval), Eq. (2)
�smin lowest separation required for resolving two  peaks
Ug utilization of separability, Eq. (33)
t time
tM hold-up time
tR retention time

tR,last retention time of the last peak
u mobile phase velocity
v solute velocity

 ̨ saturation, Eq. (9)
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k selectivity, Eq. (56)
ı solute discrimination, Eq. (32)

 solute mobility, Eq. (16)
 peak width (its standard deviation)
m unretained width of a peak, Eq. (50)

 dimensionless time, Eq. (28)
 dimensionless film thickness, Eq. (22)

 solute immobility, Eq. (16)
0 immobility of a reference solute

¯ g separability-averaged immobility, Eq. (41)

ppendix A. Resolution, selectivity, effective plate number

.1. Resolution

Metric of the peak resolution [24,31] (Rs) is not included in the
ystem of metrics (Fig. 7) described in the main text. In many
espects, the metric of peak resolution is similar to the metric (�s)
f their separation. In fact, as shown in Eq. (48), for Gaussian peaks
aving no more than moderately different widths, the difference in
s and �s  is primarily only in the scaling.

Historically, the resolution was essential for the development of
rt of chromatography, and it continues to play a vital role in current
ractice of chromatography. Unfortunately, due to its substantial
eficiencies [4,34,35], the use of the resolution in theoretical stud-

es is limited.
The resolution (Rs) of peaks A and B is defined as [24]

s = tR,B − tR,A

w̄b
, w̄b = wb,A + wb,B

2
(54)

here wb is the base width of a peak [24]. The roots of this definition
o back to the celebrated van Deemter et al. [36] 1956 paper where
t was suggested that “a simple case [of separation of two peaks]
s obtained when the tangents of the elution curves of the sub-
equent solutes just touch at the base of the chromatogram”. The
efinition in Eq. (54) has been proposed by Phillips in 1958 [34].
he same year, the metric has been formally recommended by the
eading authorities in chromatography [37] “as one which might
e useful for the time being”. Right from its introduction, the met-
ic was met  with skepticism as being “unnecessarily cumbersome”
34] and “difficult to use in most cases” [35].

Following are some deficiencies of Rs described elsewhere in
ore details [4].
The base width (wb) of a peak in Eq. (54) might be difficult to

easure [38] and, for non-Gaussian peaks, difficult to theoretically
redict from experimental conditions.

To avoid using the base width (wb) in Eq. (54), some workers
efine resolution as [2,26,27,32,39]

s = tR,B − tR,A

4 �̄
,  �̄ = �A + �B

2
(55)

This definition is based on the fact that, for Gaussian peaks,
b = 4�. For non-Gaussian peaks, however, it is very likely that
b /= 4�. Thus, for exponential peaks, wb = � [13]. In all cases where
b /= 4�, Eqs. (54) and (55) could yield substantially different

esults. The quotient 4 in the denominator of Eq. (55) becomes an
rbitrary scaling factor that has no physical justification.

Eqs. (54) and (55) define Rs as a non-additive metric. Thus,
or consecutive peaks A, B and C having different widths,
s,AB + Rs,BC /= Rs,AC.

One consequence of non-additive character of Rs makes it
nsuitable for the measurement of quality of separation of the

eaks having very different widths. Consider a static analysis where
ll peaks are Gaussian and, therefore, Eqs. (54) and (55) yield equal
esults. A running peak capacity (nb) calculated from Eq. (7) for
smin = 4 is the number of wb-wide segments between tM and an
Rs does not get larger than E/2 regardless of the distance between the two peaks. A
noticeable departure of Rs from nb starts at t > 3tM or so and grows with t. Conditions:
Gaussian peaks in static analysis.

arbitrary time t. As shown in Fig. 10,  the resolution of any peak
in static analysis and the unretained peak can never be larger that
E/2 (Rs < E/2) which is much smaller than potential number (nb) of
wb-wide segments between tM and t. The fact that Rs might not
represent the number of wb-wide segments between two peaks
questions the very meaning of metric Rs. It appears that Eqs. (54)
and (55) are just mathematical formulae with no transparent phys-
ical meaning.

Many formulae for Rs of two  Gaussian peaks in static analysis
are known from the literature [31]. The ones that are suitable for
the peaks having substantially different widths are rather complex
and difficult to interpret. However, in view of Fig. 10,  there is even
more fundamental issue with the formulae than their mathematical
complexity. If the value of the resolution of two arbitrary peaks in
a given analysis cannot exceed a certain number regardless of the
distance between the peaks then what does the very concept of the
resolution mean? Without a clear answer to this question, only a
limited use of the metric of the resolution is possible.

For closely spaced peaks A and B, the resolution defined in Eq.
(55) can be found as [31]

Rs =
√

Nk(˛k − 1)
4(1 + k)

(when |˛k − 1| � 0) (56)

where ˛k is the selectivity [31] of solutes A and B defined in Eq. (29).
It follows from Eqs. (26) and (29) that

˛k = e�g (57)

Substitution of this formula in Eq. (56) and use of notations
adopted in the main text yields:

Rs = Eω�g

4
(when |�g| � 1) (58)

Comparison of this formula with Eq. (39) indicates that (see also
Eq. (48)):

Rs = �s

4
(when |�g| � 1) (59)

A.2. Selectivity

Like the resolution, the selectivity (˛k) that appears in Eq. (56) is

also not included in the system of metrics in Fig. 7. Because there is
one-to-one relationship, Eq. (57), between ˛k and separability (�g)
either of these two metrics of the difference in the interaction of two
solutes with stationary phase is sufficient for finding all parameters
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hat depend on that difference. However, there are the differences
etween ˛k and �g  that speak decisively in favor of �g  [8].  Some
f them are mentioned below.

Unlike the separability, the selectivity is not an additive met-
ic (for consecutive solutes A, B and C, ˛k,AB + ˛k,BC /= ˛k,AC). It can
lso be counterintuitive. Thus, it is a little odd that Rs in Eq. (56)
s proportional to ˛k − 1. For comparison, the separation (�s) in
q. (39) and Rs in Eq. (58) are proportional to �g. As a result Eqs.
39) and (58) are more transparent than Eq. (56). Several cases
an additionally highlight this point. It follows from Eqs. (29) and
57) that the case where ˛k = 0 represents a large difference in the
nteractions of two solutes with the column. In a typical analysis,
hese solutes almost certainly can be resolved. For two unseparable
olutes (�g = 0) identically interacting with a column, ˛k = 1. Two
olutes with slightly larger ˛k (say, ˛k = 1.02) can typically be easily
esolved.

The non-additive nature of ˛k also complicates the exten-
ion of ˛k to dynamic conditions (temperature-programmed GC,
radient elution LC, etc.) while �g  is very suitable for that exten-
ion [8].  The additive nature of separability was  the basis for
efining such concepts as utilization of separability (Ug) and
pecific separation (S) in Eqs. (33) and (37). It is also interest-
ng to mention that, as early as in 1958 [28], Golay expressed
he relative separation (a metric proportional to the resolu-
ion) via ln ˛k (the separability, in this report) rather than via
k.

.3. Effective plate number

Quantity N in Eq. (13) defining a column efficiency (E) is the
olumn plate number. Also widely known in chromatography is
he effective plate number [24,25,40–42],

eff = Nk2

(1 + k)2
(60)

ntroduced by Desty et al. and similar to the earlier proposed con-
epts of resolving power [28] and separation factor [43]. In the
otations of this report, quantity Neff can be expressed as

eff = (Eω)2 (61)

Special attention to quantity Neff is typically based on the fact
hat Eq. (56) for the resolution (Rs) of two low-separability solutes
the ones with |�g| � 1 and, therefore, with |˛k − 1| � 0) can be
xpressed as

s =
√

Neff (˛k − 1)

4
(when |˛k − 1| � 0) (62)

uggesting that Neff completely defines the resolution of two solutes
aving a given selectivity (˛k) (a given separability, �g, in terms of
his text).

Sometimes, it is suggested that, because Neff completely defines
s at a given ˛k, the plate number (N) should be abandoned in favor
f Neff. Along with that, the metric of a column efficiency (E) would
e abandoned as well. It should be noticed, however, that, as follows
rom Eq. (61), parameter Neff is a combination of two  independent

arameters, E and ω. It is true that the use of parameter
√

Neff

n Eq. (62) eliminates the need for parameters E and ω in order
o find Rs. It is also true that the product Eω in Eq. (39) for the
eak separation (�s) can be replaced with quantity

√
Neff . Gen-

rally, however, parameters E (column efficiency) and ω (solute
mmobility) have their own independent effects on the peak sep-

ration. These two independent effects cannot be expressed via a
ingle parameter Neff in expressions for Rs [31] and �s  (Eq. (36))
f an arbitrary peak-pair in static analysis. This is also the case for
ynamic analyses [8].

[
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As shown in the main text, the product Eω defining Neff in Eq.
(61), has a certain significance in chromatographic theory. Accord-
ing to Eq. (38), the specific separation (S) in static analysis (the
separation per unit of separability in static analysis) is equal to Eω.
However, a certain significance of metrics Neff and S does not mean
that they can replace metrics N and E. Indeed, being essentially a
column parameters, metrics N and E uniquely serve as the solid
anchors in evaluations of a column separation performance. Thus,
all metrics of a column separation performance considered in this
report and beyond [8] are proportional to metric E. On the other
hand, metrics Neff and S are solute-dependent variables. Depend-
ing on a solute retention, the value of Neff can change from zero to
N. Similarly, the value of S can change from zero to E. In addition to
that, a significance of quantities Neff and S outside of the formulae
for the separation of low-separability solutes in static analyses is
unknown. One can conclude that a solute-dependent variable Neff
is not a suitable replacement for a basic column parameter N. Sim-
ilarly, a solute-dependent variable S is not a suitable replacement
for a basic column parameter E.
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